

Publications, Patents

Optimizing energy and latency trade-offs in mobile ultra-dense IoT networks within futuristic smart vertical networks

Venkata Chunduri¹ · Atul Kumar² · Anjali Joshi³ · Soumya Ranjan Jena⁴ · Akbar Jumaev⁵ · Sujeet More⁶

Received: 23 September 2023 / Accepted: 8 November 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract

As the Internet of Things (IoT) evolves and is integrated into cutting-edge Smart Vertical Networks-based IoT, a plethora of IoT mobile devices (IMD) must contend with the increasing processing demands of time-critical tasks. The dynamic nature of the environment raises novel challenges for networks that use mobile edge computing. As a proactive response to these issues, the concept of ultra-dense IoT with Mobile Edge Computing has emerged. Within this architecture, Integrated Mobile Devices (IMDs) can save power and preserve their internal processing resources by offloading compute-intensive tasks to servers located at the network's periphery (the "edge"). Nevertheless, the increased efficiency comes at the cost of greater transmission overhead, leading to an elevated delay. To achieve an ideal equilibrium between energy preservation and latency reduction, we propose a new optimization problem that focuses on minimizing both energy utilization and latency in ultra-dense IoT networks with multiple users and tasks. This issue entails the complex optimization of concurrent user (IMD) associations, computation offloading decisions, and resource allocations. To achieve a fair distribution of network load and maximize the utilization of computational resources, we integrate multi-step computation offloading methodologies into the issue formulation. Finally, the Adaptive Particle Swarm Optimization (PSO) technique is utilized as an intelligent way of solving the problem. Significantly, our methodology exhibits a noteworthy improvement over traditional Particle Swarm Optimization (PSO) techniques, resulting in a substantial decrease in overall expenses, encompassing reductions that span from 20 to 65%.

Keywords IoT · Futuristic smart vertical networks · Ultra-dense IoT networks · Mobile edge computing · IoT mobile devices · Latency-sensitive tasks · Energy utilization

1 Introduction

✉ Venkata Chunduri
vchunduri@sycamores.indstate.edu; chunduriv1@gmail.com

Atul Kumar
atulk.singh@yahoo.co.in

Anjali Joshi
anjali.joshi@mmit.edu.in

Soumya Ranjan Jena
soumyajena1989@gmail.com

Akbar Jumaev
jumaev@tfi.uz

Sujeet More
sujeetmore7@gmail.com

The "Internet of Everything" [1] age has arrived with the rapid development of fifth-generation (5G) mobile communication technology. Wireless network access and transmission have been challenged by the growing number of connected devices, including smartphones, cars, tablets, augmented reality (AR) glasses, etc. The creation of various augmented reality services aimed at the smart city idea, based on Internet of Things infrastructure, is made possible by the rising use

¹ Department of Mathematics and Computer Science, Indiana State University, Terre Haute, USA

² Dr. D. Y. Patil B-School, Pune, India

³ Mechanical Engineering, Marathwada Mitra Mandal's Institute of Technology, Lohagaon, Pune, India

⁴ Department of Computer Science and Engineering, Mahindra University, Hyderabad, Telangana 500043, India

⁵ The Department of Statistics and Econometrics, Tashkent Institute of Finance, Tashkent, Uzbekistan

⁶ Department of Computer Engineering, Trinity College of Engineering and Research, Pune, India

Enhancing Routing Performance in Software-Defined Wireless Sensor Networks through Reinforcement Learning

Nilesh P. Sable¹, Vijay U. Rathod², Mangesh D. Salunke³, Hemantkumar B Jadhav⁴, Ravindra S. Tambe⁵, Suhas R. Kothavle⁶

Submitted: 21/05/2023

Revised: 07/07/2023

Accepted: 26/07/2023

Abstract: Software-Defined Networking (SDN) has swiftly taken over networks in data centers, telecommunications companies, and organizations because to its programmable and adaptable control plane. Due to its adaptability, SDN is a new architecture that is employed in numerous applications. The necessity for routing optimization has increased as a consequence of the exponential growth in network traffic demands needing quality of services. In order to enable the Internet of Things (IoTs), it is considered to be vital. Modern developments in SDN technology has allowed for central control and management, and programmatic interfaces enable flexible customization of network service like switches. SDN for routing has been introduced in WSNs. The SDN controller uses a variety of different methods to establish the routing path, but none of them are sufficiently efficient to provide the ideal routing path. As a result, reinforcement learning (RL) is a practical method for figuring out the best routing path. In this study, we improve the SDWSN's RL-based routing path. It is recommended to use a reward system that contains the relevant network QoS and energy efficiency metrics. While the agent receives the award and chooses what to do next base on the reward received, the SDWSN controller improves the routing path based on prior information. However, the Web also allows for remote management of the entire network.

Keywords: WSNs, SDWSN, routing, RL-based WSN, RL, IoTs, Energy optimization.

1. Introduction

SDN has developed as one of the most intriguing networking recently developed technologies. The paradigm emphasized in emphasizes the separation of the control plane from the data plane and runs on high-performance commodity hardware with a logically centralized control plane. It has been widely embraced in

actual wireless networking contexts, including datacentres, organizations that provide network infrastructure, and business networks. Additionally, since SDN has gained popularity, its security has drawn greater scrutiny. As a result, it is simple to locate numerous SDN security-related works that aim to protect SDN elements namely the switching, controllers, and SDN applications as shown in Figure 1.

¹Department of Information Technology, Bansilal Ramnath Agarwal Charitable Trusts, Vishwakarma Institute of Information Technology, SPPU, Pune, India, drsablenilesh@gmail.com

²Department of Artificial Intelligence & Data Science, GH Raisoni College of Engineering & Management Wagholi, Pune, SPPU, Pune, India, vijay.rathod25bel@gmail.com

³Department of Computer Engineering, Marathwada Mitramandal's Institute of Technology, SPPU, Pune, India, salunkemangesh019@gmail.com

⁴Department of Computer Engineering, Adsul's technical campus, Ahmednagar, India, hem3577@gmail.com

⁵Department of Computer Engineering, Dr. Vithalrao Vikhe Patil College of Engineering, Ahmednagar, India, ravindra.tambe01@gmail.com

⁶Department of Computer Engineering, Marathwada Mitramandal's Institute of Technology, SPPU, Pune, India, suhas.kothavle15@gmail.com

Transformative Trends in Generative AI: Harnessing Large Language Models for Natural Language Understanding and Generation

**Dr. Dinesh D. Patil¹, Dr. Dhanraj R. Dhotre², Dr. Gopal S. Gawande³, Ms. Dipali S. Mate⁴,
Dr. Mayura V. Shelke⁵, Prof. Tejaswini S. Bhoje⁶**

Submitted: 06/09/2023

Revised: 20/10/2023

Accepted: 07/11/2023

Abstract: The advent of Large Language Models (LLMs) has ushered in transformative trends in the field of Generative Artificial Intelligence (AI). These models, with billions of parameters, have demonstrated unparalleled capabilities in Natural Language Understanding (NLU) and Generation (NLG) tasks. This paper delves into the evolution of generative AI, emphasizing the pivotal role played by LLMs. We explore the mechanisms by which these models have revolutionized NLU and NLG through their capacity to process vast amounts of textual data and generate coherent and contextually relevant text. Additionally, we investigate the techniques and methodologies employed in harnessing the power of LLMs for various applications, ranging from chatbots and content generation to machine translation and sentiment analysis. Furthermore, we examine the challenges associated with LLM-based generative AI, such as ethical concerns, model bias, and the computational resources required for training and fine-tuning. Finally, we offer insights into the future directions of research in this domain, with a focus on optimizing LLMs for broader applications, mitigating their limitations, and ensuring their responsible deployment in real-world scenarios. This paper serves as a comprehensive overview of the current state of generative AI, shedding light on its potential to reshape the way we interact with and generate natural language content.

Keywords: Generative AI, Large Language Models (LLMs), Natural Language Understanding (NLU), Natural Language Generation (NLG), Content Generation Ethics, Multimodal AI, Human-AI, Ethical Content Generation, Data Privacy.

1. Introduction

In recent years, the field of artificial intelligence (AI) has been witness to a remarkable transformation, largely attributed to the emergence of Large Language Models (LLMs) [1]. These models, equipped with billions of parameters, have redefined the landscape of generative AI by enabling unprecedented capabilities in Natural Language Understanding (NLU) and Generation (NLG)

[2][3]. As we stand at the intersection of technology and linguistics, it becomes increasingly evident that LLMs are not just a trend but a transformative force shaping the future of AI-driven language applications.

The deployment of LLMs, such as GPT-3 and its successors, has given rise to new possibilities in human-computer interaction, content generation, and information retrieval. These models have demonstrated an exceptional ability to process vast amounts of textual data, discern context, and generate coherent and contextually relevant text in a human-like manner. From chatbots that engage users in natural conversations to automated content creation for a multitude of domains, the applications of LLM-based generative AI are manifold and continue to expand.

This paper embarks on a comprehensive exploration of the transformative trends driven by LLMs in the domain of generative AI, with a primary focus on their role in enhancing Natural Language Understanding and Generation. We aim to provide a holistic view of the evolution, methodologies, challenges, and future prospects associated with harnessing LLMs for NLU and NLG tasks.

¹Associate Professor, Department of Computer Science and Engineering, Shri Sant Gadge Baba College of Engineering and Technology, Bhusawal. dineshonly@gmail.com

²Associate Professor Department of Computer Science and Engineering, School of Computing, MIT Art Design and Technology University, Loni, Pune, India. dhanraj.dhotre@mituniversity.edu.in

³Associate professor : Deptt of E & TC Engg. Marathwada Mitra Mandal's College of Engineering Karve Nagar, Pune gopalgawande@mmcde.edu.in

⁴BE ME Computer Sci. & Engg. Pune, dipumate@gmail.com

⁵Faculty, AI&DS Department, AISSMS Institute of Information Technology, Pune. mayura.shelke@gmail.com

⁶Assistant Professor, Computer engineering Department, Marathwada Mitra Mandal's College of Engineering Karve Nagar, Pune. tejaswini.chaure@gmail.com

पेटेंट कार्यालय
शासकीय जर्नल

OFFICIAL JOURNAL
OF
THE PATENT OFFICE

निर्गमन सं. 33/2023
ISSUE NO. 33/2023

शुक्रवार
FRIDAY

दिनांक: 18/08/2023
DATE: 18/08/2023

पेटेंट कार्यालय का एक प्रकाशन
PUBLICATION OF THE PATENT OFFICE

(12) PATENT APPLICATION PUBLICATION

(19) INDIA

(22) Date of filing of Application :16/07/2023

(21) Application No.202321047867 A

(43) Publication Date : 18/08/2023

(54) Title of the invention : MACHINE LEARNING BASED GRADIENT BOOSTING REGRESSION APPROACH FOR WIND POWER PRODUCTION FORECASTING

(51) International classification	:F03D 070200, F03D 092500, G06N 050000, G06N 200000, G06N 202000	(71) Name of Applicant : 1)Dr. Satish S Banait Address of Applicant :Assistant Professor, Department of Computer Engineering, K. K. Wagh Institute of Engineering Education & Research, Nashik, Amruttshan Panchwati -422003, Maharashtra, India Nashik ----- 2)Dr. Prajakta Sachin Vispute 3)Prof. Sanjay Anil Agrawal 4)Prof. Rucha Abhishek Agrawal 5)Prof. Archana S. Banait Name of Applicant : NA Address of Applicant : NA
(86) International Application No	:PCT// Filing Date :01/01/1900	(72) Name of Inventor : 1)Dr. Satish S Banait Address of Applicant :Assistant Professor, Department of Computer Engineering, K. K. Wagh Institute of Engineering Education & Research, Nashik, Amruttshan Panchwati -422003, Maharashtra, India Nashik ----- 2)Dr. Prajakta Sachin Vispute Address of Applicant :Shrirang Near K. J. Mehta, Dwarkawadi, Nashik Road, Nashik - 422011, Maharashtra, India Nashik ----- 3)Prof. Sanjay Anil Agrawal Address of Applicant :Assistant Professor, Department of Computer Engineering, Marathwada Mitra Mandal's Institute of Technology, Vadgaon Shinde Road, Lohgaon, Pune - 411047, Maharashtra, India Lohgaon ----- 4)Prof. Rucha Abhishek Agrawal Address of Applicant :Assistant Professor, Department of AI & DS, Marathwada Mitra Mandal's Institute of Technology, Vadgaon Shinde Road, Lohgaon, Pune - 411047, Maharashtra, India Pune ----- 5)Prof. Archana S. Banait Address of Applicant :Department of Computer Engineering, MET's Institute of Engineering, Bhujbal Knowledge city, Nashik - 422207, Maharashtra, India Nashik -----
(61) Patent of Addition to Application Number	:NA Filing Date :NA	
(62) Divisional to Application Number	:NA Filing Date :NA	

(57) Abstract :

In the last few years, several countries have accomplished their determined renewable energy targets to achieve their future energy requirements with the foremost aim to encourage sustainable growth with reduced emissions, mainly through the implementation of wind and solar energy. In the present study, we propose and compare five optimized robust regression machine learning methods, namely, random forest, gradient boosting machine (GBM), k-nearest neighbor (kNN), decision-tree, and extra tree regression, which are applied to improve the forecasting accuracy of short-term wind energy generation in the wind farms, on the basis of a historic data of the wind speed and direction. Polar diagrams are plotted and the impacts of input variables such as the wind speed and direction on the wind energy generation are examined. Scatter curves depicting relationships between the wind speed and the produced turbine power are plotted for all of the methods and the predicted average wind power is compared with the real average power from the turbine with the help of the plotted error curves. The results demonstrate the superior forecasting performance of the algorithm incorporating gradient boosting machine regression.

No. of Pages : 23 No. of Claims : 8

Office of the Controller General of Patents, Designs & Trade Marks
 Department for Promotion of Industry and Internal Trade
 Ministry of Commerce & Industry,
 Government of India

(<http://ipindia.nic.in/index.htm>)

[\(http://ipindia.nic.in/index.htm\)](http://ipindia.nic.in/index.htm)

Application Details

APPLICATION NUMBER	202421007233
APPLICATION TYPE	ORDINARY APPLICATION
DATE OF FILING	02/02/2024
APPLICANT NAME	1 . Dr. Atul Prakashchandra Khatri 2 . Leena Abhijit Deshmukh 3 . Punam Bhimrao Kokate 4 . Vaibhav Dinkar Sawant 5 . Prajkti Dhananjay Shinde 6 . Reshma Shantaram Fegade 7 . Narendra Ramesh Kalbhor 8 . Mayur Ramkrishna Gandhile
TITLE OF INVENTION	DEVELOPMENT OF RCC SHORT COLUMNS WITH METAL PLATE AS A CONFINING REINFORCEMENT
FIELD OF INVENTION	CIVIL
E-MAIL (As Per Record)	avbreddy9@gmail.com
ADDITIONAL-EMAIL (As Per Record)	
E-MAIL (UPDATED Online)	
PRIORITY DATE	
REQUEST FOR EXAMINATION DATE	--
PUBLICATION DATE (U/S 11A)	01/03/2024