MARATHWADA MITRA MANDAL'S INSTITUTE OF TECHNOLOGY LOHEGAON, PUNE

SAMPLE INNOVATIVE PRACTICES IN TEACHING LEARNING IN DEPARTMENT OF MECHANICAL ENGINEERING

Sr. No.	Title of innovative practice	Goals of the practice	The context in which it is used
1	Use of Models in teaching	To visualize the concept of 3-2-1 principle in Jig Fixture Design	Subject : Machining Science and Technology Class: T.E. Mechanical Engg Name of Unit: Jigs & Fixtures
2	Use of Models in teaching	To visualize the constant pressure thermometer	Subject : Engineering Thermodynamics Class: S.E. Mechanical Engg Name of Unit: Fundamentals of Thermodynamics
3	Use of Python Programming Language	To develop programming practice	Subject: Engineering Materials & Metallurgy
4	Use of Python Programming Language	To develop programming practice	Subject: Fluid Mechanics
5	Arranging Industrial Visit	To acquated with real world Problem	Subject: General Visit to Industry under M.E.S.A. Crest Precision Screws Pvt Ltd., Chakan
6	Arranging Industrial Visit	To acquated with real world Problem	Subject: Lashkar Water Pumping Station
7	Arranging Industrial Visit	To acquated with real world Problem	Subject: Solid Mechanics ELCA Laboratories, Plot No: Gen-62, TTC Industrial Area, MIDC, Mahape, Navi Mumbai-
8	Case Based Study	To able to implement in product design and development	Subject : Solid Modeling and Drafting
9	Use of Research Paper	To understand and implement Product Data Excahnge in CAD envionment	Subject : Solid Modeling and Drafting
10	Use of CATIA - 3D Modeling Software	To able to apply software tool tools in product design and assembly	Subject : Solid Modeling and Drafting
11	Use of Models in teaching	To visualize the failure during design process	Subject : Design of Machine elements Class: T.E. Mechanical Engg Name of Unit: All sis units

Innovative Practices in Teaching Learning Sample Reports

Use of Innovative Teaching Methodology

Topic: Degree of Freedom (3-2-1 Principle)

Subject: Machining Science & Technology

Class: T.E. Mechanical Engg.

Tool Used: Physical Model

Model Prepared by: Prof. Naresh Dhamane

Use of Innovative Teaching Methodology

Topic: Constant Pressure Temperature Measurement

Subject: Engg Thermodynamics

Class: S.E. Mechanical Engg.

Tool Used: Demonstration

Setup Prepared and demonstrated by: Prof. Naresh Dhamane

Use of Innovative Teaching Methodology

Topic: Gears, Bearing Design Subject: Design of Machine elements Class: T.E. Mechanical Engg. Tool Used: Models for couplings, springs, clutches, brakes Models Maintained by: Prof. D.P.Yesane

NAME OF LAB - FLUID MECHANICS

EXPERIMENT NUMBER - 03

NAME OF EXPERIMENT - PYTHON PROGRAMMING OF FLUID SYSTEM

NAME OF STUDENT -

ROLL NUMBER -

BRANCH & YEAR -

ACADEMIC YEAR -

TERM - II

NUMERICAL EXAMPLE: (A1 BATCH ONLY)

Calculate the capillary rise in a glass tube of (2.5+0.01*X) mm diameter when immersed vertically in (a) water and (b) mercury. Take surface tensions σ = 0.0725 N/m for water and σ = 0.52 N/m for mercury in contact with air. The specific gravity for mercury is given as 13.6 and angle of contact = 130

```
print("INPUT OF PROGRAMME")
N = str(input("\nEnter Name of Student:"))
R = int(input("\nEnter Roll Number of Student:"))
B = str(input("\nBranch of Student:"))
d = float(input("Enter the value of Diamter of Tube"))
d = 2.5 * 0.001
sw = 0.0725
sm = 0.52
den = 1000
g = 9.81
h = (4*sw) / (den*g*d)
print("OUTPUT OF PROGRAMME")
print("\nName of Student:",N)
print("\nEnter Roll Number of Student:",R)
print("\nBranch of Student:",B)
print("\nCapillary Rise for Water is in meters is",h)
v = h*100
print("\nCapillary Rise for Water is in centimeters is",v)
cs = -0.642
den2 = 13600
hm = (4*sm*cs) / (den2*g*d)
```

print("\nCapillary Rise for Mercury is in meters is",hm)

vm = hm*100

print("\nCapillary Rise for Mercury is in centimeters is",vm)

INPUT OF PROGRAMME

Enter Name of Student:jj

Enter Roll Number of Student:12

Branch of Student:mech Enter the value of Diamter of Tube2.5 OUTPUT OF PROGRAMME

Name of Student: jj

Enter Roll Number of Student: 12

Branch of Student: mech

Capillary Rise for Water is in meters is 0.011824668705402648

Capillary Rise for Water is in centimeters is 1.1824668705402648

Capillary Rise for Mercury is in meters is -0.004003597769382983

Capillary Rise for Mercury is in centimeters is -0.4003597769382983

